基于多源数据融合的石油罐区安全监控模型  被引量:6

Study on safety monitoring model of petroleum tank farm based on multi-source data fusion

在线阅读下载全文

作  者:易高翔[1] 潘长城[2] 郭建中[2] 王时彬 王如君[1] 康荣学[1] 

机构地区:[1]中国安全生产科学研究院,北京100012 [2]首都经济贸易大学安全与环境工程学院,北京100070 [3]昆明理工大学国土资源工程学院,云南昆明650093

出  处:《中国安全生产科学技术》2014年第3期90-94,共5页Journal of Safety Science and Technology

基  金:"十二五"国家科技支撑计划项目(2012BAK03B03)

摘  要:由于单一传感器在石油罐区安全监控中容易受到外界因素影响从而产生误差,为提高传感器检测结果的可靠性和罐区安全监控预警的准确性,基于多源数据融合技术,建立罐区安全状态预警模型。首先,介绍了多源数据融合技术的3个层级:数据级融合,特征级融合和决策级融合,以及目前各领域常见的数据融合方法;其次,建立了基于最优加权融合算法的一级融合模型和基于BP神经网络算法的二级融合模型;最后,得到石油罐区安全监控数据融合模型,并为进一步的实践应用打下了理论基础。Due to the single sensor in the safety monitoring of oil tank farm is easily influenced by external factors and resultes in errors, in order to improve the reliability of sensor detection and the accuracy of tank farm safety mo- nitoring, based on the multi-source data fusion technology, an early - worning model of safety status in tank farm was established. Firstly the 3 levels of multi-source data fusion technology were introduced including data level fu- sion, feature level fusion and decision level fusion, as well as the common data fusion methods. Secondly the 1st level fusion model based on optimal weighted fusion algorithm and 2nd level fusion model based on BP neural net- work algorithm were established. Ffinally safety monitoring data fusion model of oil tank farm was obtained, which provides the theory basis for further practice application.

关 键 词:石油罐区 多源数据融合 BP神经网络 最优加权融合 

分 类 号:X924.3[环境科学与工程—安全科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象