检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学计算机科学与工程系,上海200030
出 处:《上海交通大学学报》2001年第2期184-187,共4页Journal of Shanghai Jiaotong University
基 金:国家自然科学基金!资助项目 (6 9772 0 0 2 )
摘 要:提出了一种用于多字体字符识别的分级协同神经网络模型 .该分级模型的识别由两部分组成 :Haken的协同网络确定识别进入哪个协同子网 ;用协同子网进行具体识别 .对大量实际采集得到的多字体字符样本的测试表明 :新模型能有效地提高协同神经网络对多字体字符的识别率 ,但由于仍保留了识别速度快的特点 ,所以新模型适用于实时的光学字符识别应用 .对加噪字符的识别试验表明该模型具有很好的鲁棒性 .In order to improve the recognition performance of synergetic neural network further, a hierachical synergetic neural network model for multifont character recognition was proposed. The recognition of hierachical model is composed of two steps. First, Haken's synergetic neural network decides which synergetic subnetwork the test sample should be input in, then the detailed recognition is carried out by synergetic subnetwork. The test on the many samples from real application show that the new model can improve recognition rate of multifont character recognition effectively. Moreover, its recognition is very quick and fits real time optical character recognition(OCR) applications. Additionally, the test on noise samples shows the new model has strong robustness.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.97.186