基于EMD和RBFNN的地铁辅助逆变器故障检测  被引量:5

Fault Detection for Subway Auxiliary Inverter Based on EMD and RBFNN

在线阅读下载全文

作  者:成亮[1] 高军伟[1,2] 张彬[1] 姚德臣[2] 冷子文 

机构地区:[1]青岛大学自动化工程学院,山东青岛266071 [2]北京交通大学轨道交通控制与安全国家重点实验室,北京100044

出  处:《青岛大学学报(工程技术版)》2014年第2期43-48,共6页Journal of Qingdao University(Engineering & Technology Edition)

基  金:国家科技支撑计划(2011BAG01B05);山东省基金课题(ZR2011FM008;BS2011DX008);轨道交通控制与安全国家重点实验室开放课题(RCS2011K005)(北京交通大学)

摘  要:针对地铁辅助逆变器故障信号非平稳的特征,提出了一种基于经验模态分解方法和径向基神经网络的地铁辅助逆变器的故障诊断方法,并应用经验模态分解方法对采集的非平稳的原始信号进行处理,将原始信号分解成多个平稳的本征模函数(intrinsic mode function,IMF),同时,采用K-均值聚类算法确定RBF神经网络的模型参数,并借助径向基神经网络的分类能力对特征向量进行故障检测。仿真结果表明,基于K-均值聚类算法的RBF神经网络,在48个测试样本中有46个正确,准确率为95.8%,高于标准RBF神经网络77.0%的准确率,说明其准确性明显高于标准的径向基神经网络。该研究能够满足地铁辅助逆变器故障检测对准确性的要求,可高效识别地铁辅助逆变器的故障。Focusing on the non-stationary characteristics of the fault signal of subway auxiliary inverter, this paper proposes a method, by combining empirical mode decomposition (EMD) with radical basis function (RBF) neural network to diagnose fault for metro auxiliary inverter. Empirical mode decomposition method is applied to analyze original non-stationary signal. The original signal is decomposed into several smooth intrinsic mode functions (IMF). The k-means clustering algorithm is used to determine the param- eters of RBF neural network model. It can detect the faults of feature vector according to the classified a- bility of RBF neural network. According to the analysis results of the fault signal of subway auxiliary inverter, the accuracy of this algorithm is higher than the foundational RBF neural network. The results satisfy the requirement of fault diagnosis of subway auxiliary inverter, and identify the fault efficiently.

关 键 词:EMD 径向基函数 神经网络 K-均值聚类算法 故障检测 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TP206.3[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象