基于振动信号和云推理的球磨机负荷软测量  被引量:7

Soft sensor for ball mill fill level based on vibration signal and cloud model reasoning

在线阅读下载全文

作  者:阎高伟[1] 龚杏雄[1] 李国勇[1] 

机构地区:[1]太原理工大学信息工程学院,太原030024

出  处:《控制与决策》2014年第6期1109-1114,共6页Control and Decision

基  金:国家自然科学基金项目(60975032);山西省自然科学基金项目(2011011012-2)

摘  要:采用振动信号对球磨机料位进行测量时,特征值具有散度大、随机性强的特点.对此,基于具有将随机性、模糊性与稳定倾向性相结合能力的云模型,提出一种利用云模型对球磨机料位进行概念表示和推理测量的方法.首先,利用逆向云发生器对振动信号的功率谱特征值进行概念提取以获得前件云;然后,由料位值信息建立相对应的后件云;最后,利用云模型的不确定推理实现球磨机料位的软测量.对比实验结果表明了所提出方法的有效性和可行性.The vibration signals of ball mill bearing are found to be highly divergent and strongly stochastic when being used as a parameter of fill level. Therefore, based on the cloud model, a mathematical tool which has the property of stable tendency and the ability to organically combine the fuzziness and the randomness of the data, a method is proposed to represent the concepts of fill level and efficiently measure the fill level in ball mill. Firstly, the antecedent cloud models are obtained by using normal backward cloud generator to extract the linguistic concept from characteristic sequence generated from the power spectral density(PSD) of the vibration signals. Then the consequent clouds corresponding to the antecedent clouds are figured out by employing the fill level information of the training samples. Finally, the soft sensor of the fill level is realized by uncertainty reasoning based on the cloud model. The comparison experiments show the effectiveness and feasibility of the proposed method.

关 键 词:球磨机 料位 软测量 云模型 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象