检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁硕[1] 常晓恒[1] 巫庆辉[1] 杨友林[1]
出 处:《电子设计工程》2014年第11期137-140,共4页Electronic Design Engineering
基 金:国家自然科学基金(61104071)
摘 要:采用附加动量BP算法、自适应最速下降BP算法、自适应动量BP算法、弹性BP算法4种启发式改进方法分别对标准BP算法进行改进,并构建了相应的BP神经网络分类模型,将构建的4种分类模型应用于二维向量模式的分类,并进行了泛化能力测试,将4种BP网络分类模型的分类结果进行对比。仿真结果表明,对于中小规模的网络而言,弹性BP算法改进的BP网络的分类结果最为精确,收敛速度最快,分类性能最优;附加动量BP算法改进的BP网络的分类结果误差最大,收敛速度最慢,分类性能最差;自适应学习速率BP算法改进的BP网络的分类结果的误差值、收敛速度及分类性能介于上述两种算法之间。Four kinds of heuristic methods including additional momentum BP algorithm, adaptive steepest descent BP algorithm, adaptive momentum BP algorithm and resilient BP algorithm are used to improve standard BP algorithm, and the corresponding BP neural networks are also established. The four kinds of classification methods are applied to classification of two-dimensional vectors. Then their generalization abilities are tested and the classification results of the four BP network are compared with each other. The simulation results show that for small and medium scale networks, BP neural network improved by resilient BP algorithm has the most accurate classification result, the fastest convergence speed and the best classification ability; the one improved by additional momentum BP algorithm has the biggest classification error, the slowest convergence speed and the worst classification ability; while the classification error, convergence speed and classification ability of BP neural network improved by adaptive steepest descent BP algorithm lie between the above two algorithms.
关 键 词:启发式方法 算法改进 BP神经网络 模式分类 泛化能力
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249