检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学电子科学与技术系,安徽合肥230027 [2]中国科学技术大学物理系,安徽合肥230026
出 处:《通信技术》2014年第6期612-617,共6页Communications Technology
基 金:国家自然科学基金(No.61071173)~~
摘 要:传统的异常行为检测多数是利用单特征建模,检测的行为较为单一,检测率较低,针对这些问题,提出一种基于多条件随机场模型(MCRF)的异常行为检测方法,MCRF模型具有融合多特征和联系上下文信息的优势。通过Kinect获取3D骨架数据,提取角度、位置、速度三类特征,形成多类特征子集,利用基本的CRF模型对每一类特征子集建模,形成多个CRF单元,然后组合所有的CRF单元,得到MCRF模型,最后利用MCRF模型进行异常行为检测。实验结果表明基于MCRF的异常行为检测方法具有较高的检测率。Most of traditional abnormal activity detection is modeling by a single feature, so the testing activity is simple, and the detection accuracy rate is relatively low. For these problems, abnormal activity detection based on multiple CRF ensemble model is proposed. The advantage of MCRF model is the ability of combining more features and utilizing adaptive contextual information. There are three features: angle feature, position feature, speed feature by the 3 D skeleton data of Kinect. And several features subsets can be formed through more features extraction. Then CRF model is used for each feature subset and to get CRF units. Finally, all the CRF units are combined to produce MCRF model which is utilized to detect abnormal activity. The experimental results indicate that the detection accuracy rate of this method is better.
关 键 词:异常行为检测 多条件随机场模型 KINECT 3D骨架数据 特征提取
分 类 号:TP391.7[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.100.204