高阶修正Camassa-Holm方程的Cauchy问题  被引量:1

Cauchy Problem of Higher-order Modified Camassa-Holm Equation

在线阅读下载全文

作  者:王红军[1] 闫威[1] 

机构地区:[1]河南师范大学数学与信息科学学院,河南新乡453007

出  处:《河南师范大学学报(自然科学版)》2014年第3期1-4,共4页Journal of Henan Normal University(Natural Science Edition)

基  金:河南省基础与前沿技术研究项目(122300410414;132300410432)

摘  要:主要证明一类高阶修正的Camassa-Holm方程拥有哈密顿结构和建立在H2(R)适定性结果.首先证明高阶修正的Camassa-Holm方程拥有两个重要的守恒律.然后利用这两个重要的守恒律证明高阶修正的Camassa-Holm方程拥有哈密顿结构.并且使用Kato理论,证明高阶修正的Camassa-Holm方程在Hs(R)(s>3/2)中是局部适定的;利用两个重要的守恒律得到了一个重要的先验估计.结合局部适定性结果以及先验估计,对于初值u0∈H2(R),证明高阶修正的Camassa-Holm方程在H2(R)中是整体适定的.In this paper, we mainly prove that the higher-order modified Camassa-Holm equation possesses the Hamitonian structure and establishes the global well-posedness result in H^2(R). Firstly, it is shown that the higher-order modified Camassa-Holm equation possesses two important conseravtion laws. Then, we prove that the higher-order modified Camassa- Holm equation possesses the Hamitonian structure with the aid of two important conservation laws. By using Kato's theory, we prove that the Cauehy problem for the higher-order modified Camassa-Holm equation is locally well-posed for the initial data in H^s(R)(s〉3/2). By using the two important conserved laws, we derive a prior estimate. Combining the prior estimate with the local well-posedness result, we derive the global well-posendess result of the Cauchy problem for the higher-order modified Camassa-Holm equation is globally well-posed for the initial data in H^2 (R).

关 键 词:高阶修正的Camassa—Holm方程 哈密顿结构 守恒律 局部适定 整体适定 

分 类 号:O186.12[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象