检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学计算机科学与技术学院,南京210094
出 处:《计算机应用研究》2014年第7期2205-2208,共4页Application Research of Computers
基 金:国家自然科学基金资助项目(60773172);"青蓝工程"资助项目;江苏高校优势学科建设工程资助项目
摘 要:Harris是一种高效的角点检测算法,但不具备尺度不变性。SURF(speeded-up robust features)算法虽然能很好地解决图像尺度变化问题,但是在特征点提取方面没有Harris稳定。针对Harris和SURF两种算法的特点,提出一种新的Harris-SURF特征点提取算法。首先用Harris算法检测图像角点,再用SURF算法提取图像特征点;然后合并角点和特征点,并剔除重复点获得新的特征点集,确定新特征点的主方向并生成特征描述符,再对图像使用比值法进行初匹配;最后利用RANSAC剔除错误匹配点实现精确匹配。实验结果表明,该算法对图像存在旋转、缩放、光照及噪声变化有较强的鲁棒性,同时提高了运行效率。Harris is an efficient corner detection algorithm,but it doesn't have the scale invariance. SURF algorithm can solve the problem of image scale changes,but it is less stable than Harris in respect to feature point extraction. This paper proposed a new Harris-SURF feature point extraction algorithm according to the characteristics of Harris and SURF algorithm.Firstly,it extracted image corners using Harris algorithm and detected image feature points using SURF algorithm,then it merged corner points and feature points and eliminated duplicate points to obtain a new feature point set,and determined main directions of feature points and generated feature descriptors,then used ratio method to get initial matching. Finally,it used RANSAC to eliminate errors and achieve accurate matching. Experiments show that the algorithm has strong robustness for image with rotation,scaling,illumination and noise changes and improve efficiency.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.177