检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:堵锡华[1]
机构地区:[1]徐州工程学院化学化工学院,江苏徐州221111
出 处:《福州大学学报(自然科学版)》2014年第3期468-473,共6页Journal of Fuzhou University(Natural Science Edition)
基 金:江苏省自然科学基金资助项目(09KJD150012);徐州市绿色技术重点实验室项目(SYS2012009)
摘 要:基于分子连接性及邻接矩阵,计算69种干黄酱挥发性成分的分子连接性指数mχt,借助多元逐步回归法优化筛选了其中的结构参数0χ、5χ、3χc和5χpc,将其作为人工神经网络的输入层神经元,采用4∶8∶1的网络体系结构,以BP算法获得预测保留指数的神经网络模型,其相关系数R和标准偏差S分别为0.985和93.301.结果表明,保留指数与0χ、5χ、3χc、5χpc具有良好的非线性关系,BP神经网络方法预测的结果要优于多元回归方法的结果.A pattern recognition model for the detection of food management was established by usingback -propagation (BP) algorithm in neural network. Based on molecular connectivity and adjacencymatrix, we calculated 69 volatile flavor compounds in dry yellow soybean sauce in this paper. By usingmultiple stepwise regression method, we screened and optimized the structure parameters xX, 5X, 3Xcand 5 p(p to establish a BP neural network model. The four structural parameters were used as the inputneurons of the artificial neural network, and a 4 " 8 : 1 network architecture was employed. A neuralnetwork model for predicting retention index (RI) was constructed with the back -propagationalgorithm. The correlation coefficient R and the standard errors was 0.985 and 93. 301, respectively,which showed a significantly nonlinear relationship between RI and the four structural parameters. Itcan be concluded that the prediction results of BP neural network are better than those of multipleregression methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7