(m,n)-投射模和(m,n)-内射模  

( m,n)-projective Modules and( m,n)-injective Modules

在线阅读下载全文

作  者:蹇红[1] 孙春涛[1] 

机构地区:[1]重庆邮电大学数理学院,重庆400065

出  处:《重庆师范大学学报(自然科学版)》2014年第4期96-99,共4页Journal of Chongqing Normal University:Natural Science

摘  要:设R是任给的环,m和n都是正整数。右R模NR是(m,n)-内射模,若对Rm的任给的n-生成子模K,则有Ext1R(Rm/K,N)=0。右R模MR是(m,n)-投射模,若对任给的(m,n)-内射模N,有Ext1R(M,N)=0。当m=1,n是任给的正整数时,(m,n)-投射模就是f-投射模。任给的(m,n)-表现模都是(m,n)-投射模。设F-(m,n)-proj表示由所有的(m,n)-投射模所组成的模集,F-(m,n)-inj表示由所有的(m,n)-内射模所组成的模集。本文给出了(m,n)-投射模的刻画,同时证明了(F-(m,n)-proj,F-(m,n)-inj)是一余挠理论,且每一个R-模都有一个特殊的(m,n)-内射预包络和一个特殊的(m,n)-投射预覆盖。还给出了(m,n)-投射模和(m,n)-内射模的相关的性质。Let R be a ring. For two fixed positive integers rn and n, a right R-module N is called (m, n)-injective module if ExtR(Rm/K,N) = 0 for any n-generated submodule K of the Rm. A right R-module M is called (m, n)-projective modules if Ext~ (M, N)= 0 for any (m, n)-injective right R-module N. In case m= 1,n any positive integer. (m,n)-projective module is f-pro- jective module. Any (m,n)-finitely presinted module is (m,n)-projective module. F-(m,n)-projis the class of all the (m,n)-projec- tive modules and F-(m,n)-inj stands for the class of all (m, n)-injective modules . In this paper, We get the Characterizations of (m,n)-projective modules. We prove (F-(m,n)-proj,F-(rn,n)-inj)is a cotorsion pair. Any module has an special (m,n)-injective preenvelope and special (m,n)-projective precover, provide the relational characterizations about (m, n)-projective modules and (m, n)-injective modules.

关 键 词:(m n)-内射模 (m n)-投射模 包络 覆盖 余挠理论 

分 类 号:O153.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象