高阶流形方法及其应用  被引量:14

FUNDAMENTALS AND APPLICATIONS OF HICH-ORDER MANIFOLD METHOD

在线阅读下载全文

作  者:田荣[1] 栾茂田[1] 杨庆[1] Keizo Ugai 

机构地区:[1]大连理工大学土木工程系及海岸和近海工程国家重点实验室,辽宁大连116024 [2]日本群马大学工学部土木工学科

出  处:《工程力学》2001年第2期21-26,共6页Engineering Mechanics

基  金:国家教育部跨世纪优秀人才培养计划研究基金项目;日本平和中岛财团国际学术交流与共同研究项目资助

摘  要:流形方法是一种可进行连续与非连续变形问题分析的灵活而有效的数值计算方法。本文详细地推导了二阶流形方法的具体计算列式,分别开发了一阶流形方法与二阶流形方法的计算程序.通过实例计算表明:提高覆盖函数的阶次可有效地提高流形方法的计算精度。Manifold Method (MM) developed by Dr. Shi is a novel and very versatile numerical method, which is applicable to both continuous deformation problems and discontinuous deformation problems in structural and geotechnical engineering in a unified framework. In this paper, the generalized mathematical formulations of the manifold method using polynomial cover functions with high orders are presented. Accordingly, the manifold method using the second-order polynomial cover functions is given in detail. Afterwards, the Visual C++ computer programs of the MM using the second- and first-order polynomial cover functions have been developed respectively, and applied to the analysis of a purely-bending beam subjected to bending moment. The calculated results with use of the 2nd-order MM agree fairly well with theoretical solutions. However, the results computed for the same model using the 1st-order MM have marked deviation from the theoretical values. The comparison between the calculated results for this numerical example indicates that the computational accuracy of the MM can be greatly improved if a higher order cover function is employed. Therefore, it is practically necessary and important to develop a higher order manifold method for complicated deformation problems.

关 键 词:有限单元法 非连续变形分析 流形方法 有限覆盖 高阶流形方法 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象