检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田荣[1] 栾茂田[1] 杨庆[1] Keizo Ugai
机构地区:[1]大连理工大学土木工程系及海岸和近海工程国家重点实验室,辽宁大连116024 [2]日本群马大学工学部土木工学科
出 处:《工程力学》2001年第2期21-26,共6页Engineering Mechanics
基 金:国家教育部跨世纪优秀人才培养计划研究基金项目;日本平和中岛财团国际学术交流与共同研究项目资助
摘 要:流形方法是一种可进行连续与非连续变形问题分析的灵活而有效的数值计算方法。本文详细地推导了二阶流形方法的具体计算列式,分别开发了一阶流形方法与二阶流形方法的计算程序.通过实例计算表明:提高覆盖函数的阶次可有效地提高流形方法的计算精度。Manifold Method (MM) developed by Dr. Shi is a novel and very versatile numerical method, which is applicable to both continuous deformation problems and discontinuous deformation problems in structural and geotechnical engineering in a unified framework. In this paper, the generalized mathematical formulations of the manifold method using polynomial cover functions with high orders are presented. Accordingly, the manifold method using the second-order polynomial cover functions is given in detail. Afterwards, the Visual C++ computer programs of the MM using the second- and first-order polynomial cover functions have been developed respectively, and applied to the analysis of a purely-bending beam subjected to bending moment. The calculated results with use of the 2nd-order MM agree fairly well with theoretical solutions. However, the results computed for the same model using the 1st-order MM have marked deviation from the theoretical values. The comparison between the calculated results for this numerical example indicates that the computational accuracy of the MM can be greatly improved if a higher order cover function is employed. Therefore, it is practically necessary and important to develop a higher order manifold method for complicated deformation problems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74