关于球面函数强一致逼近的一个定理  被引量:1

A THEOREM ON STRONG UNIFORM APPROXIMATION ON SPHERE

在线阅读下载全文

作  者:曾庆业[1] 钮宏霞[2] 

机构地区:[1]北京师范大学数学系,北京100875 [2]山东昌潍师范专科学校数学系,山东潍坊261043

出  处:《北京师范大学学报(自然科学版)》2001年第3期312-316,共5页Journal of Beijing Normal University(Natural Science)

基  金:国家自然科学基金资助项目 (10 0 710 0 7)

摘  要:Σn - 1是Rn(n >2 )中的单位圆 .对 f∈C(Σn - 1) ,记 f的连续模为ω(f ,·) .EδN 是 f的Fourier Laplace展开的Ces劋ro平均的等收敛算子 .得到的主要结论是 :令 f∈C(Σn- 1) ,n >2 ,δ >n- 3/ 2 =λ - 1/ 2 ,N∈N ,则‖ 1N+1∑Nk =0|Eδk(f) - f|2 ‖c ≤ c(n)N+1∑Nk =0ω2 (f ,1k+1) .Let Σ n-1 be a unit sphere in R n(n>2). For f∈C(Σ n-1 ), its modulus of continuity is denoted by ω(f,·). E δ N is the equiconvergent operator of the Cesàro means of the Fourier Laplace expansion of f . The result is: For f∈C(Σ n-1 ), n>2,δ>n-3/2= λ-1/2 , N∈N, ‖1N+1∑Nk=0|E δ k(f)-f| 2‖ c≤c(n)N+1 ∑Nk=0ω 2(f,1k+1).

关 键 词:强逼近 等收敛算子 连续模 球面函数 强一致逼近 Fouier-Laplace展开 CESARO平均 

分 类 号:O174.41[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象