一般半相依回归系统的协方差改进估计  被引量:2

Covariance-Improved Estimator of Generalized Seemingly Unrelated Regression Equations System

在线阅读下载全文

作  者:王立春[1] 汪惠民[2] 陈桂景[2] 

机构地区:[1]中国科技大学统计与金融系,合肥230026 [2]安徽大学数学系,合肥230039

出  处:《应用概率统计》2001年第2期156-162,共7页Chinese Journal of Applied Probability and Statistics

基  金:国家自然科学基金资助项目!(19971001)

摘  要:本文讨论了由两个不等阶的回归方程组成的半相依系统.运用协方差改进法获得了参数的一个迭代估计序列,并证明它在协方差阵己知时,处处收敛到最佳线性无偏估计,同时其协方差阵在矩阵偏序意义下单调下降收敛到最佳线性无偏估计的协方差阵。当协方差阵未知时,证明了两步估计序列具有无偏性和渐进正态性,并且给出了当迭代次数亦趋于无穷时,保证其具有相合性的一个条件。 本文结果拓广和改进了王松桂等的结果,进一步显示了协方差改进法的有效性.For the system of Seemingly Unrelated Regression Equations given by (in this two linear regression models, y1 is a matrix of m × 1, y2 is a matrix of n × 1, m ≠ n), we obtained am iteration sequence of estimator by using the covariance-improved approach. It is proved that the sequence converges everywhere to the best linear unbiased estimator (BLUE) and their covariance matrixes converge monotonically to that of the BLUE if the covariance matrixof the errors is known. When the covariance matrix of the errors is unknown, we consider the optimality of the two-stage covariance improved estimator. Under normal distribution assumption on the random error, the unbiasedness, the asymptotic normality and the strong consistency of the two-stage estimator are proved. Furthmore, a weak consistency condition is obtained when the iteration step is infinite. In this paper we extended and improved the covariance-improved estimator introduced by Wang Songgui, the results show clearly the power of the covariance-improved approach.

关 键 词:协方差改进法 两步估计 回归方程组 半相依系统 最佳线性无偏估计 迭代估计序列 协方差阵 

分 类 号:O212.1[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象