检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国工程物理研究院
出 处:《测井技术》2001年第4期308-310,共3页Well Logging Technology
摘 要:应用人工神经网络对铀矿测井解释中岩性识别和孔隙度预测等问题进行了研究。采用了一种改进的 BP算法 ,其方法具有收敛速度快、避免网络陷入局部最小和出现振荡现象、优化网络结构等优点。提出了一种基于统计的学习样本生成方法 ,使样本生成问题规范化。使用该方法生成的样本真实可靠 ,具有代表性 ,可大大提高样本质量。实际应用网络进行岩性识别和孔隙度预测 。Application of BP Neural Network Technique in Log Interpretation of Uranium Deposits.WLT, 2001, 25(4): 308-310 The rock character identification and porosity prediction in log interpretation of uranium deposits are studied by artificial neural network. An improved BP algorithm and a learning sample generation method based on statistics are performed. The algorithm has many advantages, such as high convergence speed, avoid running into local minimum and occuring oscillation, in addition, it also optimizes the network structure and so on. The generation of learning sample used in this paper is normalized and this operation ensures the validity of the sample. A reliable result has been obtained in rock character identification and porosity prediction by the neural network.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63