检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《系统工程与电子技术》2001年第8期72-75,共4页Systems Engineering and Electronics
基 金:国家自然科学基金 ( 6990 2 0 0 5 ) ;山东省自然科学基金青年基金 (Q98G0 2 15 1);山东建材学院基金资助课题 (Y980 9)
摘 要:讨论了BP小波神经网络在训练过程中减小误差函数时最优方向的确定和自适应调整学习率的方法。首先论证了小波神经网络的数学基础 ,然后讨论了BP小波神经网络的学习过程 ,重点讨论了减小误差函数最优方向的确定方法 ,即如何保证步长方向与负梯度方向一致 ,由此得出了自适应调整学习率的简便方法。该方法具有普遍性 ,有广泛的应用价值。仿真结果表明 ,采用最优梯度下降方向可以大幅度提高BP小波神经网络的学习速度。The determination of the best direction of step length vector and the adaptive adjustment of training rate for BP wavelet neural network (WNN) are discussed. Firstly, the mathematical foundation of WNN is presented, then the training process of WNN, esp. the determination method of best direction in reducing error function as well as the adaptive adjustment of training rate is discussed. Some new conclusions are put forward. The simulation result shows the training speed of WNN can be improved greatly. The method is general and can be applied extensively.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.150