检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李文军[1]
机构地区:[1]中国科学院软件所并行计算室,北京100080
出 处:《数值计算与计算机应用》2001年第1期71-80,共10页Journal on Numerical Methods and Computer Applications
基 金:中国 863(863-306-ZD11-03-1; 863-306-ZD01-03-2)项目;; 中国 973(G199903280
摘 要:In this paper,we present a kind of pre-symmetrizers for the nonsymmetric linear systems arising from the discretization of nonself-adjoint second order scalar elliptic equation.Based on combination these pre-symmetrizers with CG method, the new algorithm, LRSCG algorithm, is presented.The numerical results show that the LRSCG algorithm is better than BiCG, CGS, BiCGSTAB, GMRES, QMR and SGMRES methods for thses nonsymmetric linear systems.In this paper,we present a kind of pre-symmetrizers for the nonsymmetric linear systems arising from the discretization of nonself-adjoint second order scalar elliptic equation.Based on combination these pre-symmetrizers with CG method, the new algorithm, LRSCG algorithm, is presented.The numerical results show that the LRSCG algorithm is better than BiCG, CGS, BiCGSTAB, GMRES, QMR and SGMRES methods for thses nonsymmetric linear systems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31