改进的拉氏乘子法和多变量广义变分原理  

Modified Lagrange Multiplier Method and Its Application to the Establishment of Generalized Variational Principles

在线阅读下载全文

作  者:何吉欢[1] 

机构地区:[1]上海大学应用数学和力学研究所,上海200072

出  处:《数学的实践与认识》2001年第4期421-426,共6页Mathematics in Practice and Theory

摘  要:拉氏乘子法是构造广义变分原理的重要途径 ,在识别拉氏乘子时 ,拉氏乘子是独立变分的 ,而识别后 ,它却是其他变量的函数 ,这是产生临界变分的原因 .本文对拉氏乘子法作了改进 ,提出了一种新的理论——凑合反推法 ,应用该方法可以方便地构造多变量的广义变分原理 。The general approach to the establishment of generalized variational principle is the well\|known Lagrange multiplier method. In this method, the multipliers are considered as independent variables during the procedure of identification of the multipliers, however, after identification, they all become functions of the other variables, i.e. the multipliers are not independent variables, contradicting the a priori assumption. The paper illustrates that the so\|called variational crisis (some Lagrange multiplier become zero) is the intrinsic shortcomings of the method, which can be completely overcome by the semi\|inverse method proposed by the present author.

关 键 词:拉氏乘子 凑合反推法 变分原理 临界变分 流体力学 

分 类 号:O176[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象