检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]抚顺石油学院,辽宁抚顺113001
出 处:《抚顺石油学院学报》2001年第4期78-80,共3页Journal of Fushun Petroleum Institute
摘 要:考虑线性模型Y =Xβ +ε ,Eε=0 ,D(ε) =σ2 V ,其中X列满秩 ,V为正定矩阵。在矩阵损失下 ,吴启光得到了回归系数 β的线性估计在非齐次线性估计类中可容许的充分必要条件 ,该定理结论与BaksalaryJK和MarkiewiczA在二次损失下所得结果在表达式上有所不同。为了得到相近的结论 ,对吴启光的结果做了进一步仔细分析 ,得到结果如下 :在矩阵损失下回归系数 β的线性估计AY +g在非齐次线性估计类中可容许当且仅当XAV对称 ,且AX =I时 g =0或AX≠I时 a∈ (0 .1)有τ(AX) (-∞ ,(a - 1) / (a +1) ]∪ [1,+∞ )。自然地 ,对 β的齐次线性估计AY在非齐次估计类中的可容许估计的等价条件为XAV对称且AX =I。这一结果能更清晰地表明在二次损失下 β的可容许估计必是在矩阵损失下的可容许估计 。Consider liner model Y=Xβ+ε,Eε=0,D(ε)=σ 2V. Where X is column full rank and V is positive definite matrix. Under matrix loss WU Qi-guang have obtained the equivalence conditions under that linear estimators of β is admissible. Comparing expressions of the theorems, WU's results are different slightly from that of Baksalary J K and Markiewicz A obtained under quadratic loss in 1985.To achieve the close conclusion, WU's qualifications are analyzed in detail and the results are as follows: AY+g is admissible for a regression coefficient vector β among the set of inhomogeneous linear estimators under matrix loss if and only if XAV is symmetric and g =0 when AX=I or when AX≠I,a∈(0,1) τ(AX) (-∞,( a-1)/(a+1)] ∪ ∪[1,∞).Naturally, AY is admissible for β among the set of inhomogeneous linear estimators if formula XAV is admissible and AX=I exist. And the theorem explains clearly that the admissible estimators for β under quadratic loss become certain one under matrix loss. Accordingly, this conclusion is helpful to study other model results. [WTHZ]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.73