矩形网格上二元NEVILLE型向量有理插值  

BIVARIATE NEVILLE-TYPE VECTOR-VALUED RATIONAL INTERPOLANTS OVER RECTANGULAR GRIDS

在线阅读下载全文

作  者:陈之兵[1] 

机构地区:[1]深圳大学,深圳518060

出  处:《计算数学》2002年第1期67-76,共10页Mathematica Numerica Sinica

摘  要:A new kind of bivariate vector-valued rational interpolants is recursively estab- lished by means of Samelson inverse over rectangular grids, with scalar numerator and vector-valued denominator. In this respect, it is essentially different from that of the previous work. Sufficient conditions for existence, characterization and uniqueness in some sense are proved respectively. And the resluts in the paper are illustrated with some numerical examples.A new kind of bivariate vector-valued rational interpolants is recursively estab- lished by means of Samelson inverse over rectangular grids, with scalar numerator and vector-valued denominator. In this respect, it is essentially different from that of the previous work. Sufficient conditions for existence, characterization and uniqueness in some sense are proved respectively. And the resluts in the paper are illustrated with some numerical examples.

关 键 词:向量有理插值 Neville型 矩形网格 向量值函数 

分 类 号:O241.3[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象