分子距边矢量结合神经网络法预测二(口恶)(口英)类化合物PCDFs的logK_(ow)值  被引量:14

Predicting the LogKow Using Molecular Distance - edge Vector Combined with Artificial Neural Network (ANN) Method

在线阅读下载全文

作  者:黄俊[1] 余刚[1] 张彭义[1] 

机构地区:[1]清华大学环境科学与工程系环境模拟与污染控制国家重点实验室,北京100084

出  处:《计算机与应用化学》2002年第1期103-107,共5页Computers and Applied Chemistry

基  金:国家重点基础研究专项经费资助项目(G1999045711)

摘  要:采用以基团间距离、边数为基准的分子距边矢量作为二(口恶)(口英)类化合物多氯代二苯并呋喃(PCDFs)的分子结构描述符,结合反向传播人工神经网络方法建立了PCDFs的正辛醇/水分配系数(logKow)与分子结构描述符之间的定量关系模型。结果表明,所采用的结构描述符对于分子结构具有很好的区分能力,所建立的模型对于校验样本的预测精度较高。利用所得模型,对文献尚未报道logKow实验值的其他所有85种PCDFs给出了预测值。Polychlorinated dibenzofurans (PCDFs) are highly concerned as persistent organic pollutants and suspected endocrine disrupters, whose property logKow plays an important role for its environmental risk assessment. In this paper, a novel molecular distance - edge vector (VMDE, μ in short) was introduced as structure descriptors, then a quantitative relationship of high accuracy was established with back - propagation artificial neural network method. An additional sample set was used to test the model with quite good results. With the established model, the logKow values of the other 85 PCDFs not belonging to the modeling sample set were given, these values has not been reported in literatures.

关 键 词:多氯代二苯并呋喃 有机污染物 定量构效关系 网络 分子距边矢量 二EYing PCDFS logKow 

分 类 号:X131[环境科学与工程—环境科学] TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象