The Growth Theorem for Convex Mappings in B^p  被引量:4

B^p上双全纯凸映照的增长定理

在线阅读下载全文

作  者:刘太顺[1] 龚昇[1] 

机构地区:[1]中国科学技术大学数学系

出  处:《Chinese Quarterly Journal of Mathematics》1991年第1期78-82,共5页数学季刊(英文版)

摘  要:Let B^p={z=(z_1,…,z_n)∈C^n| ‖z‖_p=<1}, where p is a real number not less than 1, be a Reinhardt domain in C^n and f(z)=(f_1(z), …, f_n(z)) be the normalized biholomorphic mapping in B^p, i.e, f(0) =0, J_f(0)=I, where J_f means the Jacobian of f, I means the identity matrix. In this note, we prove that: If f(z) is a nomalized biholomorphic convex mapping in B^p, p≥1, then is true, where ‖f(z)‖_p= As consequence, we have Actually, we can extend these results to the reinhardt domain D_p=, where p_1≥p_2≥…≥p_n≥1. We prove that: If f(z) is a nomalized biholomorphic convex mapping in D,,p_1≥p_2≥…≥p_n≥1, then is true, where ‖z‖~p= Moreover, we can extend (1) to the following inequality: where ‖f(z)‖_p=

关 键 词:双全纯凸映照 增长定理 正规化 

分 类 号:O174.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象