检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李涉川 孙天夫 黄新[1] 梁嘉宁[2] LI Shechuan;SUN Tianfu;HUANG Xin;LIANG Jianing(Guilin University of Electronic Technology,Guilin 541004,China;Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China)
机构地区:[1]桂林电子科技大学,桂林541004 [2]中国科学院深圳先进技术研究院,深圳518055
出 处:《集成技术》2018年第6期60-68,共9页Journal of Integration Technology
基 金:国家自然科学基金项目(51707191);深圳市科技创新计划项目(JCYJ20170818164527303)
摘 要:内嵌式永磁同步电机具有高功率密度、高可靠性和弱磁性等诸多优点,但由于电动机参数具有非线性化特征,导致电磁转矩难以精确估算。该文提出了一种基于卷积神经网络的电磁转矩估算方法,即转矩观测器。首先,基于所搭建的高保真非线性内嵌式永磁同步电机模型,获得用于神经网络训练的转矩观测器数据;然后,基于所提出的卷积神经网络转矩观测器实现内嵌式永磁同步电机的精确控制;最后,为获取最优的转矩估算误差,在仿真实验阶段对不同参数和结构的卷积神经网络进行了对比和分析。结果表明,该神经网络可以实现电磁转矩的准确估算,所建立的转矩观测器具有良好的性能参数和泛化能力。The interior permanent magnet synchronous machines have advantages of high power density, high reliability,field weakening performance etc.However,subject to the nonlinear characteristics of motor parameters,accurate estimation of the electromagnetic motor torque is very difficult.In this paper, a convolutional neural network based electromagnetic torque estimation method,i.e.,a torque observer is investigated.Training data of the convolutional neural network are collected from the simulations of a high fidelity nonlinear interior permanent magnet synchronous machine by the means of finite element analysis. Then,a control scheme is adopted to control the interior permanent magnet synchronous machines With the proposed torque observer.In order to reduce the torque estimation error,different parameters and structures of the convolutional neural network are compared.Experimental results show that the proposed convolutional neural network based torque observer can estimate the electromagnetic torque accurately.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3