基于卷积神经网络的永磁同步电机转矩观测器  被引量:2

Observer of Interior Permanent Magnet Synchronous Machine Torque Based on Convolutional Neural Network

在线阅读下载全文

作  者:李涉川 孙天夫 黄新[1] 梁嘉宁[2] LI Shechuan;SUN Tianfu;HUANG Xin;LIANG Jianing(Guilin University of Electronic Technology,Guilin 541004,China;Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China)

机构地区:[1]桂林电子科技大学,桂林541004 [2]中国科学院深圳先进技术研究院,深圳518055

出  处:《集成技术》2018年第6期60-68,共9页Journal of Integration Technology

基  金:国家自然科学基金项目(51707191);深圳市科技创新计划项目(JCYJ20170818164527303)

摘  要:内嵌式永磁同步电机具有高功率密度、高可靠性和弱磁性等诸多优点,但由于电动机参数具有非线性化特征,导致电磁转矩难以精确估算。该文提出了一种基于卷积神经网络的电磁转矩估算方法,即转矩观测器。首先,基于所搭建的高保真非线性内嵌式永磁同步电机模型,获得用于神经网络训练的转矩观测器数据;然后,基于所提出的卷积神经网络转矩观测器实现内嵌式永磁同步电机的精确控制;最后,为获取最优的转矩估算误差,在仿真实验阶段对不同参数和结构的卷积神经网络进行了对比和分析。结果表明,该神经网络可以实现电磁转矩的准确估算,所建立的转矩观测器具有良好的性能参数和泛化能力。The interior permanent magnet synchronous machines have advantages of high power density, high reliability,field weakening performance etc.However,subject to the nonlinear characteristics of motor parameters,accurate estimation of the electromagnetic motor torque is very difficult.In this paper, a convolutional neural network based electromagnetic torque estimation method,i.e.,a torque observer is investigated.Training data of the convolutional neural network are collected from the simulations of a high fidelity nonlinear interior permanent magnet synchronous machine by the means of finite element analysis. Then,a control scheme is adopted to control the interior permanent magnet synchronous machines With the proposed torque observer.In order to reduce the torque estimation error,different parameters and structures of the convolutional neural network are compared.Experimental results show that the proposed convolutional neural network based torque observer can estimate the electromagnetic torque accurately.

关 键 词:内嵌式永磁同步电机 深度学习 卷积神经网络 转矩观测器 

分 类 号:TM301.2[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象