检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁蒙蒙 周涛 张飞飞[1] 杨健 夏勇 LIANG Mengmeng;ZHOU Tao;ZHANG Feifei;YANG Jian;XIA Yong(School of Public Health and Management,Ningxia Medical University,Yinchuan 750004,P.R.China;School of Computer Science and Engineering,North Minzu University,Yinchuan 750004,P.R.China;School of Science,Ningxia Medical University,Yinchuan 750004,P.R.China;School of Computer Science,Northwestern Polytechnical University,Xi'an 710072,P.R.China)
机构地区:[1]宁夏医科大学公共卫生与管理学院,银川750004 [2]北方民族大学计算机科学与工程学院,银川750004 [3]宁夏医科大学理学院,银川750004 [4]西北工业大学计算机学院,西安710072
出 处:《生物医学工程学杂志》2018年第6期977-985,共9页Journal of Biomedical Engineering
基 金:国家自然科学基金资助项目(61561040);陕西省教育厅项目(2013JK1142)
摘 要:卷积神经网络(CNN)是机器学习研究中的热点,在医学图像应用中具有一定价值。本文首先介绍了CNN基本原理,其次综述了其在网络结构的改进:在模型结构方面,总结了CNN的11种经典模型,并以时间顺序梳理发展进程;在结构优化方面,从CNN的5个方面(输入层、卷积层、下采样层、全连接层以及整个网络)总结研究进展。然后,对学习算法从优化和融合两个方面进行归纳:优化算法方面,根据优化目的(提高准确率、防止过拟合、防止局部最值、提高收敛速度)梳理算法的进展;方法融合方面,分别从输入层、卷积层、下采样层、全连接层和输出层共5个角度进行归纳。最后,将CNN映射到医学图像领域,结合计算机辅助诊断探讨CNN在医学图像中的应用。本文对CNN进行了较为全面系统地总结,对CNN的研究发展具有积极意义。Recent years,convolutional neural network (CNN)is a research hot spot in machine learning and has some application value in computer aided diagnosis.Firstly,this paper briefly introduces the basic principle of CNN. Secondly,it summarizes the improvement on network structure from two dimensions of model and structure optimization.In model structure,it summarizes eleven classical models about CNN in the past 60years,and introduces its development process according to timeline.In structure optimization,the research progress is summarized from five aspects (input layer,convolution layer,down-sampling layer,full-connected layer and the whole network)of CNN. Thirdly,the learning algorithm is summarized from the optimization algorithm and fusion algorithm.In optimization algorithm,it combs the progress of the algorithm according to optimization purpose.In algorithm fusion,the improvement is summarized from five angles:input layer,convolution layer,down-sampling layer,full-connected layer and output layer.Finally,CNN is mapped into the medical image domain,and it is combined with computer aided diagnosis to explore its application in medical images.It is a good summary for CNN and has positive significance for the development of CNN.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117