检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李重春 祝安琪 王烁罡 刘宇丽[1] 周定均[1] 刘昌新[1] 云卿[1] LI Chongchun;ZHU Anqi;WANG Shuogang;LIU Yuli;ZHOU Dingjun;LIU Changxin;YUN Qing(Hohhot Power Supply Bureau,Hohhot 010050Inner Mongolia,China)
出 处:《电力大数据》2019年第1期66-70,共5页Power Systems and Big Data
摘 要:电力产业是国民工业系统中重要的产业。在电网运行管理中,对于负荷预测具有非常重要的作用。更加准确的电力负荷预测可以为电网的安全稳定运行、实时进行电网负荷的调度提供了重要依据。特别是在经济方面,精确的电力负荷预测可以优化发、用电电网调度计划,合理调度和分配资源,从而起到使社会效益、经济效益最大化的作用。然而随着中国经济的飞速发展,对电力的需求不断增长,电力负荷本身受诸多因素以及政策影响比如日期、天气、气候、市场等其他因素,这些因素更大大加大了准确进行电力负荷预测的困难性。一直以来,人们一直都致力于提高电力负荷预测的准确性,人工神经网络算法具有泛化、学习能力强等优点,现在该算法已在电力负荷预测领域中得到了广泛应用,并且取得了良好的效果。近年来,人工神经网络领域取得重大突破,涌现出一个新的深度学习研究领域。文章就是基于最新发展的人工神经网络算法,结合实际地区电网数据研究了短期电力负荷预测的相关问题。The power industry plays a pillar role in the national industrial system. The smooth operation of electricity is related to the lifeline of the national economy. In power system management,power load forecasting is crucial. Accurate power load forecasting can provide important basis for the smooth operation of the system and real-time power dispatching. Especially in the economic field,power load forecasting can play a significant role in rationally deploying resources,optimizing power generation plans,and achieving optimal social and economic benefits. However,with the rapid economic development of our country,the demand for electricity is increasing day by day,and the power load itself is also affected by the date,weather,climate,market,and policies,which greatly increases the difficulty of accurately predicting the power load. People have always been committed to improving the accuracy of power load forecasting. Artificial neural networks have the advantages of self-learning and generalization ability. They have been widely used in power load forecasting and have achieved satisfactory results. In recent years,the field of artificial neural networks has made gratifying breakthroughs,and a new research field of deep learning has emerged. This article based on the latest development of artificial neural network,combined with the actual data on the short-term powerload forecasting issues related research.
分 类 号:TN92[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147