检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张贝贝 赵东亚 高守礼 ZHANG Beibei;ZHAO Dongya;GAO Shouli(College of Chemical Engineer,China University of Petroleum,Qingdao 266580)
机构地区:[1]中国石油大学(华东)化学工程学院,青岛266580
出 处:《系统科学与数学》2018年第11期1240-1251,共12页Journal of Systems Science and Mathematical Sciences
基 金:国家自然科学基金(61473312)资助课题
摘 要:针对非奇异快速终端滑模在趋近阶段收敛速率较慢的问题,提出一种时变非奇异快速终端滑模控制算法,提高了系统收敛速率.首先,提出一种时变非奇异快速终端滑模,使系统在滑动阶段能有限时间收敛到平衡点,并在趋近阶段保持较快的收敛速率.同时,提出一种新型双幂次趋近律,使其与经典双幂次趋近律相比具有更好的运动品质,同时改善系统鲁棒性.根据设计的滑模和趋近律提出一种时变非奇异快速终端滑模控制算法.通过Lyapunov理论证明:当系统扰动为0时,系统能实现有限时间收敛到平衡点;当系统扰动不为0时,系统滑模和其导数能有限时间收敛到一个剩余集,提高了系统控制精度.通过Matlab仿真表明,与传统非奇异快速终端滑模控制算法相比,该方法能有效提高系统收敛速率和控制精度,改善鲁棒性.In order to improve convergent rate of conventional non-singular fast terminal sliding mode (NFTSM) control in reaching phase, a time-varying non-singular fast terminal sliding mode (TVNFTSM) control scheme is proposed so as to enhance convergence of systems. Firstly, a TVNFTSM structure is proposed to achieve finite-time convergence in sliding phase and faster convergence in reaching phase. Also, a new double power reaching law is designed and further improves convergence and robustness in comparison with classical double power reaching law. By applying Lyapunov theory, it can be proved that system can achieve finite-time stability without perturbation and sliding mode and its derivation can converge to a small residual set in finite time with perturbation, respectively. Finally, the simulation results verify that the faster convergence rate, higher control precision and stronger robustness can be achieved in comparison with the conventional NFTSM control scheme.
关 键 词:时变快速非奇异终端滑模 双幂次趋近律 鲁棒性 剩余集
分 类 号:TP12[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.95.186