检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Min Li Chao Yang Qiao Sun Wen-Jing Ma Wen-Long Cao Yu-Long Ao
机构地区:[1]Institute of Software,Chinese Academy of Sciences,Beijing 100190,China [2]University of Chinese Academy of Sciences,Beijing 100049,China [3]School of Mathematical Sciences,Peking University,Beijing 100871,China [4]Center for Data Science,Peking University,Beijing 100871,China [5]peng Cheng Laboratory,Shenzhen 518052,China
出 处:《Journal of Computer Science & Technology》2019年第1期77-93,共17页计算机科学技术学报(英文版)
基 金:the National Key Research and Development Plan of China under Grant No.2016YFB0200603;the National Natural Science Foundation of China under Grant No.91530323;the Beijing Natural Science Foundation of China under Grant No.JQ18001.
摘 要:With the advent of the big data era,the amounts of sampling data and the dimensions of data features are rapidly growing.It is highly desired to enable fast and efficient clustering of unlabeled samples based on feature similarities. As a fundamental primitive for data clustering,the k-means operation is receiving increasingly more attentions today.To achieve high performance k-means computations on modern multi-core/many-core systems,we propose a matrix-based fused framework that can achieve high performance by conducting computations on a distance matrix and at the same time can improve the memory reuse through the fusion of the distance-matrix computation and the nearest centroids reduction.We implement and optimize the parallel k-means algorithm on the SW26010 many-core processor,which is the major horsepower of Sunway TaihuLight.In particular,we design a task mapping strategy for load-balanced task distribution,a data sharing scheme to reduce the memory footprint and a register blocking strategy to increase the data locality.Optimization techniques such as instruction reordering and double buffering are further applied to improve the sustained performance.Discussions on block-size tuning and performance modeling are also presented.We show by experiments on both randomly generated and real-world datasets that our parallel implementation of k-means on SW26010 can sustain a double-precision performance of over 348.1 Gflops,which is 46.9% of the peak performance and 84%of the theoretical performance upper bound on a single core group,and can achieve a nearly ideal scalability to the whole SW26010 processor of four core groups.Performance comparisons with the previous state-of-the-art on both CPU and GPU are also provided to show the superiority of our optimized k-means kernel.
关 键 词:PARALLEL K-MEANS performance optimization SW26010 PROCESSOR Sunway TaihuLight
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28