检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李俊哲[1] 秦志 周鑫隆 LI Jun-Zhe;QIN Zhi;ZHOU Xin-long(School of Resources and Environmental Engineering,Wuhan University of Technology,Wuhan 430070,China;Juji Coal Mine,Yongcheng Coal and Electricity Holding Group Co.,Ltd.,Yongcheng 476600,China)
机构地区:[1]武汉理工大学资源与环境工程学院,武汉430070 [2]永城煤电控股集团有限公司车集煤矿,河南永城476600
出 处:《煤炭技术》2019年第1期92-95,共4页Coal Technology
摘 要:针对现阶段瓦斯涌出量预测中存在的样本数据库过饱和现象,提出了一种限定记忆模式的多维GM-RBF瓦斯涌出量预测模型;基于软测量思想引入了代谢因子,变一维瓦斯涌出量数据为多维"辅助变量"和"主导变量",构建了多维动态数据集;对车集煤矿2612工作面的实例验证结果表明:限定记忆模式下的多维GM-RBF模型拟合曲线离散性最小,瓦斯浓度变化趋势和实际监测结果最为接近,对煤矿工作面瓦斯涌出量的预测具有更高的准确性。In allusion to the problem of data supersaturation during gas emission prediction at the present stage, an on-line gas emission prediction model based on GM-RBF of limited memory is put forward. Based on soft measuring thought, metabolic factor is introduced to change one-dimensional index variable of gas emission into multi-dimensional auxiliary variable and dominant variable. A case study in No. 2612 working face of Juji coal mine is implemented. Results show that the proposed model has the minimum discreteness. The prediction results are closest to the actual values, indicating that the proposed model is able of predicting gas emission constantly and accurately.
关 键 词:瓦斯涌出量预测 限定记忆 GM-RBF算法 软测量
分 类 号:TD712[矿业工程—矿井通风与安全]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.243.24