Statistical Estimation of the Shannon Entropy  被引量:4

Statistical Estimation of the Shannon Entropy

在线阅读下载全文

作  者:Alexander BULINSKI Denis DIMITROV 

机构地区:[1]Steklov Mathematical Institute of Russian Academy of Sciences and Department of Mathematics and Mechanics,Lomonosov Moscow State University,Moscow 119234,Russia

出  处:《Acta Mathematica Sinica,English Series》2019年第1期17-46,共30页数学学报(英文版)

基  金:Supported by the Russian Science Foundation(Grant No.14-21-00162)

摘  要:The behavior of the Kozachenko–Leonenko estimates for the(differential) Shannon entropy is studied when the number of i.i.d. vector-valued observations tends to infinity. The asymptotic unbiasedness and L^2-consistency of the estimates are established. The conditions employed involve the analogues of the Hardy–Littlewood maximal function. It is shown that the results are valid in particular for the entropy estimation of any nondegenerate Gaussian vector.The behavior of the Kozachenko–Leonenko estimates for the(differential) Shannon entropy is studied when the number of i.i.d. vector-valued observations tends to infinity. The asymptotic unbiasedness and L^2-consistency of the estimates are established. The conditions employed involve the analogues of the Hardy–Littlewood maximal function. It is shown that the results are valid in particular for the entropy estimation of any nondegenerate Gaussian vector.

关 键 词:Shannon differential entropy Kozachenko-Leonenko estimates HARDY-LITTLEWOOD maxi-mal function ANALOGUES ASYMPTOTIC UNBIASEDNESS and L^2-consistency Gaussian VECTORS 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象