检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨雄[1] YANG Xiong(School of Accounting,Loudi Vocational and Technical College,Loudi Hunan 417000,China)
机构地区:[1]娄底职业技术学院会计学院,湖南娄底417000
出 处:《萍乡学院学报》2018年第6期8-12,共5页Journal of Pingxiang University
摘 要:极限是微积分的基础,进而厘清极限的求解方法是学好"数学分析"的关键,通过利用初等函数公式、两个重要极限、极限存在准则、等价无穷小代换、函数的连续性、幂指函数公式、洛必达法则、海涅定理、中值定理、定积分的定义、斯特林公式及级数的收敛条件等对极限的求解方法进行探索,并应用实例分析,为深入理解极限概念和掌握求解极限的方法提供参考。The limit is the basis of calculus,and the solution to the limit is the key to the study of the course of mathematical analysis.In the paper,the solution to the limit is explored by using the elementary function formula,the two important limits,the limit existence criterion,the equivalent infinitesimal substitution,the continuity of the function,the power exponent function formula,the L’ Hospital’ rule,the Henie theorem,the mean value theorem,the definition of definite integral,the convergence condition of the Stryn formula and the series.Meanwhile,the examples applied are analyzed to provide a reference for the understanding of the concept of limit and the method of mastering the solution to the limit.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43