基于人工神经网络的拼焊板成形极限图预测  被引量:4

Prediction of forming limit diagram for tailor welded blanks based on artificial neural network

在线阅读下载全文

作  者:陈水生[1] 唐春红[2] 

机构地区:[1]河南理工大学,焦作454000 [2]湖南大学汽车车身先进设计制造国家重点实验室,长沙410082

出  处:《塑性工程学报》2014年第4期47-51,共5页Journal of Plasticity Engineering

基  金:河南省教育厅科学技术研究重点项目(14A460013);河南省科技攻关计划项目(142102210130)

摘  要:成形极限图(FLD)是评价金属板材成形能力的重要工具。为快速的建立拼焊板(TWB)成形极限图,建立基于人工神经网络(ANN)拼焊板FLD的预测模型。采用试验设计和有限元法获得训练样本,L-M算法对样本数据进行训练,建立了FLD预测模型并与物理试验结果对比。基于预测模型,分析了摩擦系数对拼焊板最小极限应变的影响。结果表明,基于ANN预测的拼焊板FLD与试验结果吻合,主应变的相对误差最大为8.71%。摩擦系数f对最小极限应变影响较大,f从0增大到0.12时,最小极限应变先增大后减小,并在摩擦系数f=0.06附近出现极小值。The forming limit diagram (FLD) is a very effective tool to evaluate the formability of the sheet metal . To quickly create the FLD for tailor welded blank (TWB) ,we proposed a prediction model based on an artificial neural network .The design of experiment and finite element method were used to gain the training samples , which were trained by the Levenberg-Marquardt (L-M ) algorithm . The prediction model of FLD was built and validated using the experimental data . Furthermore , the effect of the friction coefficient on the minimum ultimate strain was analyzed by the presented prediction model . The results show the FLD by the prediction model is consistent with that from the experiment data ,and the maximum relative error between the experiments and the predictions is 8.71% . The friction coefficient has a marked effect on the limit strain of TWB . The least limit strain first increases then decreases with the increasing of the friction coefficient form 0 to 0.12 , reaching the minimal value when the friction coefficient is near 0.06 .

关 键 词:拼焊板 成形极限图 人工神经网络 预测模型 

分 类 号:TG386[金属学及工艺—金属压力加工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象