Hopf代数的若干弱结构  被引量:1

Some weaker structures of Hopf algebras.

在线阅读下载全文

作  者:李方[1] 

机构地区:[1]浙江大学数学系,浙江杭州310028

出  处:《浙江大学学报(理学版)》2002年第3期246-254,共9页Journal of Zhejiang University(Science Edition)

基  金:国家自然科学基金资助项目 (199710 74)

摘  要:研究了 Hopf代数的一些弱概念及它们之间的关系、性质和特性 ,并刻画其上的模或余模结构 .首先引入 Hopf代数的一些弱化结构并讨论其关系 .然后用某些弱 Hopf代数的弱对极构造正则半群 .另一方面 ,由可逆半群建构出一个弱 Hopf代数 .给出了余交换点双代数成为左 /右 Hopf代数的一些等价条件 .利用不可约分支和类群元集么半群 ,在双代数 (弱 Hopf代数 )中构造出一些子双代数 (子弱 Hopf代数 ) .进一步 ,一些双代数被证明作为子双代数是不可约分支的补带 /半格之和 .当类群元么半群是Clifford么半群时 ,由一些不可约分支之和构造出一个左拟模双代数 .最后给出的一些结果体现了弱对极在弱 Hopf代数上的模 /余模结构中的作用 .Some weaker concepts of Hopf algebras and their characterizations, relationships and the structures of modules and co-modules over them were studied. First, the concepts of weaker structures of Hopf algebras were introduced and their relationships were discussed. Then, some regular semigroups were constructed by using of weak antipodes of some weak Hopf algebras. Then a weak Hopf algebra was built from an inverse semigroup. Some sufficient and necessary conditions are given under which a cocommutative pointed bialgebra becomes a left/right Hopf algebra. By using irreducible components and group-like monoids, some sub-bialgebras and sub-weak Hopf algebras were constructed from a bialgebra or weak Hopf algebra. Moreover, it was shown that for a bialgebra, when the idempotent submonoid of the group-like monoid is a band (semi-lattice), there exists a sub-bialgebra which is a supplemental band (semi-lattice) sum of some sub-algebras without identities. When the group-like monoid was a Clifford monoid, a left quasi-module-bialgebra was built from the sum of some irreducible comonents. Last, the role of weak antipodes in the structures of modules/ comodules over a weak Hopf algebra is presented.

关 键 词:HOPF代数 弱结构 正则性 拟模双代数 半格和 

分 类 号:O153.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象