检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京科技大学数学力学系,北京100083 [2]上海大学力学系上海市应用数学与力学研究所,上海200072
出 处:《北京科技大学学报》2002年第3期380-382,共3页Journal of University of Science and Technology Beijing
基 金:国家自然科学基金资助课题(No.19802012);教育部回国留学人员科研资助基金;教育部高等学校骨干教师科研资助基金
摘 要:建立了描述弹性固体材料中空穴萌生与增长的非线性数学模型,获得了空穴萌生时控制参数临界值的精确计算公式和空穴半径增长的精确表达式.在大变形几何分析中采用了对数应变度量,并且应用了Hooke弹性固体材料的本构关系.数值分析结果表明:当材料不可压时空穴萌生的临界载荷将略低于neo-Hooke不可压超弹性材料的相应计算结果,并且在空穴萌生后空穴半径将迅速增大,这与细观损伤力学和超弹性材料的空穴分叉理论的结论相一致;空穴萌生时环向应力将成为无限大;如果材料是弹塑性(韧性)材料,则会使得空穴附近发生塑性变形,从而导致材料的局部损伤和破坏.The nonlinear mathematical model is given to describe void nucleation and growth for elastic solid materials. Exact formulae to calculate the critical values of control parameters for cavitation and exact ex- pressions for growth of void radial are derived. For large deformation, finite logarithmic strain measure is used, and the constitutive relationship of materials is basic on Hookean elastic law. The numerical results show that the critical loads of cavitation for Hooke elastic solid in the case of uncompressible materials are slightly lower than the critical loads for uncompressible neo-Hookean hyperelastic materials. The cavity will be suddenly ra-pid growth after void nucleation. This conclusion is agreed with the corresponding conclusion from the damage micromechanics and the theory of cavitated bifurcation for hyperelastic materials. Also, the analysis shows that the loop stress will become infinite when void nucleation. Thus, the materials near the cavity will product plastic deformation if the materials are elastic-plastic. This leads to local failure and fracture of the materials.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49