检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学图像处理与模式识别研究所,上海200030
出 处:《上海交通大学学报》2002年第6期884-886,共3页Journal of Shanghai Jiaotong University
摘 要:基于支持向量机 ( SVM)在处理小样本、高维数及泛化性能强等方面的优势 ,提出了一种基于主元分析 ( PCA)与 SVM的人脸识别方法 .利用 PCA方法对人脸图像进行特征提取 ,再利用SVM与最近邻分类器相结合的策略对特征向量进行分类识别 .剑桥Based on the high performance of support vector machine(SVM) in tackling small sample size, high dimension and its good generalization, this paper proposed a face recognition method based on principal component analysis(PCA) and SVM. The PCA is used to reduce the dimension and extract the feature, then the SVM combined with the nearest distance classifier is used for classification. The ORL face database was used to test the proposed method. The experiment result shows that the method is effective.
关 键 词:人脸识别 支持向量机 主元分析 最近邻距离分类器 模式识别 特征提取
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.229.13