基于BP神经网络的水轮机调节系统非线性模型及仿真计算  被引量:4

Modeling and Simulation of Water Turbine Nonlinear Regulation System Based on BP Neural Network

在线阅读下载全文

作  者:陈涛[1] 陈启卷[1] 李俊益[1] 谢进[1] 

机构地区:[1]武汉大学动力与机械学院,湖北武汉430072

出  处:《水电能源科学》2014年第6期131-133,152,共4页Water Resources and Power

基  金:国家自然科学基金项目(51179135)

摘  要:针对水轮机调节系统仿真中采用线性水轮机模型时仿真结果与实际运行有一定偏差或采用基于插值非线性模型时插值难以保证处处连续并导致压力环迭代不收敛的问题,先利用BP神经网络对水轮机运行数据进行延拓和训练,以获取连续光滑的流量和力矩空间曲面供压力迭代计算使用,再结合特征线算法合理选取边界条件,最终建立起完整的调节系统高精度非线性模型。仿真结果表明,该模型具有相当高的精度,仿真效果与预期一致。To solve the problem of the general linear water turbine model that widely applied in the hydro-plant simulation, but the simulation results differ with the actual situation. What's more, the continuity of non-linear model based interpolation can hardly be controlled that could lead to the non-convergence of the pressure loop iteration. This paper firstly adopted the BP neural network to get the continuous and smooth space surfaces by training the operation data of the specific water turbine and applied them to the pressure iteration and interpolation. And then it established the nonlinear model of the whole regulation system with proper boundary conditions by combining with the characteristic method. The simulation results are consistent with our expectations, which verifies the high accuracy of the model.

关 键 词:水轮机 调节系统 BP神经网络 非线性模型 仿真 

分 类 号:TK733.1[交通运输工程—轮机工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象