基于机器视觉的脐橙品质在线分级检测  被引量:7

Online Grade Detection of Navel Orange Quality Based on Machine Vision

在线阅读下载全文

作  者:胡发焕[1,2] 董增文[2] 

机构地区:[1]江西理工大学机电工程学院,江西赣州341000 [2]南昌大学机电工程学院,南昌330031

出  处:《湖北农业科学》2014年第9期2160-2164,共5页Hubei Agricultural Sciences

基  金:国家自然科学基金项目(61273282)

摘  要:为实现利用机器视觉代替人工视觉对脐橙进行品质分级检测,采用数字形态学方法把脐橙从背景中分离出来,并提取脐橙的体积、果面缺陷、颜色和纹理等几个主要特征;以这些特征量为支持向量机的输入特征向量进行SVM分类器训练;最后用该分类器进行脐橙分级检测。结果表明,该分类器正确识别率可达90.5%,单个脐橙处理时间为165 ms,具有识别率高、实时性好的特点,适合于实时环境下的脐橙分级检测。To replace artificial vision with machine vision and realize grade detection of navel orange quality, mathematical morphological was used to separate navel orange from background. The bulk features, surface defect features, colour features and texture features were extracted and used as the input feature vectors of the support vector machine, support vector machine was used in training and classification of those feature. The trained classifier was used to detect the navel orange. Results showed that the classifier had high rate of correct identification and real-time, which could be used in real-time detection of navel orange.

关 键 词:机器视觉 支持向量机 品质分级 脐橙 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象