检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《振动.测试与诊断》2014年第3期576-584,597,共9页Journal of Vibration,Measurement & Diagnosis
基 金:吉林省科技发展计划资助项目(20100506);东北电力大学博士科研启动基金资助项目(BSJXM-201115)
摘 要:针对刀具磨损监测中多传感器融合监测方法的缺点,提出了基于声发射信号多特征融合与最小二乘支持向量机(lease square support vector machine,简称LS-SVM)相结合的刀具磨损状态监测方法。首先,分别采用经验模态分解法、双谱分析法以及小波包分析法提取采样信号在时域、频域、时-频域内的特征,构造联合多特征向量;然后,利用核主元分析法(kernel principal component analysis,简称KPCA)对联合多特征向量进行融合降维处理,通过提取累积贡献率大于85%的主元,剔除了联合多特征中与刀具磨损相关性较小的冗余特征,生成融合特征;最后,将融合特征送入最小二乘支持向量机,有效地实现了(尤其在小样本下)刀具磨损状态的识别,与神经网络识别方法相比具有更高的识别率。Considering the deficiency in the multi-sensor fusion method for cutting-tool wear monitoring,a method using multi-feature fusion and least squares support vector machines based on acoustic emission signals is put forth.First,by method of empirical mode decomposition,bispectral analysis and wavelet packet analysis,the feature of sampling signals in domain of time,frequency and time-frequency is extracted to construct a multi-feature vector.Its dimension is then reduced using kernel principal component analysis.The fusion feature is generated by extracting the principal component whose cumulative contribution rate is above 85% and rejecting the redundant feature that has a lower correlation to cutting-tool wear.Finally,the fusion feature is put into least squares support vector machines.This method can effectively recognize the cutting-tool wear condition,especially in small samples,and has higher recognition rates than that of a neural network.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.17.112