检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢庭 陈忠[1,2,3] 李志平[4] 张宁新[1,2,3] 郭莉莉[1,2,3]
机构地区:[1]华中科技大学自动化学院,武汉430074 [2]华中科技大学多谱信息处理技术国家级重点实验室,武汉430074 [3]华中科技大学图像信息处理与智能控制教育部重点实验室,武汉430074 [4]大港油田集团通信公司,天津300280
出 处:《计算机工程》2014年第7期281-285,共5页Computer Engineering
基 金:国家自然科学基金青年基金资助项目"面向对象高分辨率遥感图像信息提取技术研究"(40801162);中央高校基本科研业务费专项基金资助项目(HUST:2013TS133);省部产学研结合基金资助项目(2011B090400420);宇航智能控制技术国家级重点实验室开放基金资助项目
摘 要:利用卫星热红外异常判别技术进行地震预测的方法都是纯手工或半手工的,在分析处理海量遥感数据时具有局限性,并且传统方法对地震三要素的预测准确率不高,尤其是震中位置的预测。针对上述问题,提出一种综合震象云颜色、纹理以及浮现频率等特征来自动预测地震的方法。利用灰度共生矩阵对热红外数据进行纹理特征提取,使用BP神经网络模型训练目标神经网络,将纹理特征输入目标神经网络进行识别,提取疑似目标,同时滤掉非目标并跟踪,将疑似目标浮现频率超过5次的区域精确定位为目标出现的位置,从而实现智能化和自动化的地震预测。反演实验验证结果表明,该方法是一种震中位置预测较为准确的中短期地震预测方法。The earthquake prediction research based on interpretation technique of satellite thermal anomaly has a history of over 20 years. Previous studies are pure manual or semi-manual with many shortages in processing huge quantity remote data. Meanwhile, the traditional methods cannot give an accurate estimation on three elements of earthquakes, especially on epicenter location. In order to solve the above-mentioned problems, this paper puts forward a method based on image recognition with considering the color, texture and occurrence frequency of quake-trace cloud. An earthquake can be predicted intelligently and automatically by using automatic target detection in artificial intelligence. The entire procedure is as follows. It gets the texture features from thermal infrared data by using gray level co-occurrence, trains a target neural network by making use of BP neural network model, inputs texture features into target neural network and gets the suspected targets, filters suspected target which is undersized or oversize, tracks the remaining suspected targets, acquires the certain target by its occurrence frequency which is larger than 5, and predicts an earthquake. Experimental result shows that it is a short term earthquake prediction method with more accurate epicenter location prediction.
关 键 词:图像识别 目标跟踪 地震预测 震象云 灰度共生 神经网络
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90