检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学能源与动力学院,江苏南京210016
出 处:《南京理工大学学报》2014年第3期402-408,共7页Journal of Nanjing University of Science and Technology
基 金:国家自然科学基金(10902049);中国博士后科学基金(2012M521073);江苏省博士后基金(1302020C)
摘 要:针对常用汽车状态估计算法计算复杂、精度低等问题,提出一种新的汽车多状态量估计方法。建立了包含定常统计特性噪声和Pacejka轮胎模型的七自由度非线性汽车动力学模型。针对一般粒子滤波(PF)算法存在的缺陷,使用非追踪卡尔曼滤波(UKF)算法产生粒子滤波的重要性概率密度。基于非追踪粒子滤波(UPF)算法实现对汽车多个关键状态量的最小均方误差估计。将基于UPF算法、UKF算法与PF算法的估计器进行了比较,揭示了粒子数对汽车状态估计效果的影响。基于ADAMS/Car的虚拟实验和实车实验表明基于UPF算法的估计器精度高于基于UKF算法的估计器,估计值相对于实际值的平均绝对误差均控制在状态幅值的10%以内,且实时性优于基于PF算法的估计器。Aiming at the problems of complicated calculation and low precision for common vehicle state estimation algorithms,a novel vehicle multi-state estimation algorithm is proposed here. A 7 degrees of freedom ( 7-DOF) non-linear vehicle dynamic model containing constant noise and Pacejka tire model is established. Aiming at the defects of general particle filter(PF) algorithms,the unscented Kalman filter(UKF) algorithm is used to generate the importance density. The unscented particle filter(UPF) algorithm is used to realize the minimum mean-square error(MMSE) estimation of multiple key vehicle states. Estimators based on the UPF algorithm, UKF algorithm and PF algorithm are compared,and the results indicate the influences of numbers of particles on estimation accuracy. The results of a virtual experiment based on ADAMS / Car and a real vehicle experiment indicate that the accuracy of the estimator based on the UPF algorithm is higher than that of the estimator based on the UKF algorithm. The mean absolute errors of the estimate values of the estimator based on the UPF algorithm relative to the real values are lower than 10 percent of the modality amplitude. The real-time performance of the estimator based on the UPF algorithm is better than that of the estimator based on the PF algorithm.
关 键 词:汽车动力学 非追踪粒子滤波算法 汽车 多状态量 状态估计 定常统计特性噪声 Pacejka轮胎模型 非追踪卡尔曼滤波算法 最小均方误差 粒子滤波算法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46