检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李梦涵[1] 熊淑华[1] 熊文[1] 魏育才[1] 李杨[1]
出 处:《计算机技术与发展》2014年第8期10-13,共4页Computer Technology and Development
基 金:基金项目:欧盟 FP7 -PEOPLIE -IRSES -S2EuNet (247083)
摘 要:行人检测算法是利用行人的特征结合分类器对图片中是否有行人进行判断的方法。文中基于传统的HOG行人特征检测方法以及Adaboost分类器思想,改进了行人检测算法。使用多尺度的HOG特征对图片的检测区域进行特征提取,并采用级联的Adaboost分类器结合对应尺度的特征进行分类判断,将判断结果输入下一级分类器中继续进行分类判断,最终实现区域内有无人的检测。实验结果表明多尺度下的级联分类器能够更加有效地筛选出行人区域,在计算时间小幅增加的情况下,很大地提高了检测精度。Pedestrian detection algorithm is a method to decide whether there exists pedestrian or not in the picture by characters of pedes-trians combined with classifiers. In this paper,an improved pedestrian detection algorithm is advanced based on the traditional HOG method and Adaboost classifying idea. In this algorithm,use the multi-scale HOG features to extract the features in the detection region,then the cascaded Adaboost classifiers with multi-scale features are used to judge,getting its result input into the next level of classifier,and finally achieve the goal of pedestrian detection. The experimental result shows that the cascaded classifiers using multi-scale features performs better in pedestrian detection,which achieves higher detection precision at little cost of computing time.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.123