检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]信息工程大学信息系统工程学院,郑州450002
出 处:《电子与信息学报》2014年第8期1884-1890,共7页Journal of Electronics & Information Technology
基 金:国家自然科学基金(61272490;60903221)资助课题
摘 要:该文提出一种自适应引导进化遗传算法。算法中采用佳点集方法产生初始种群,结合保留精英个体策略,对种群进行分割,各子种群并行交叉变异,且其中一个子种群为随机产生的。为提高算法收敛速度,分别对各子种群中较优个体进行优秀基因位统计,据此对其它个体采取一种自适应引导变异操作。通过将算法运行过程建模为有限齐次马氏链,证明了算法的全局收敛性和收敛快速性。实验结果表明,自适应引导进化遗传算法较其它的遗传算法在收敛速度和准确度上都有较大提高。A Guided Self-adaptive Evolutionary Genetic Algorithm(GSEGA) is proposed. The principle of good point set is used to generate the initial population. Based on the elitist preserved method, a way of parallel crossing and mutation with population-segmentation is offered, in which a son population among the segmented population is randomly generated. In addition, a guided self-adaptive mutation strategy based on the statistics of the more excellent individualities is adopted on the other part of the son population to speed up the evolution. Through the use of the homogeneous finite Markov chain model, the global convergence and high searching speed of the GSEGA is proved. The experimental results show that the GSEGA presents a higher speed and precision in comparison with the other Genetic Algorithms(GAs).
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117