检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓湧
出 处:《物流技术》2014年第7期253-255,267,共4页Logistics Technology
基 金:江西省高校人文社科项目(GL1221);江西省社会科学规划项目(11GL39)
摘 要:为了提高物流需求的预测精度,提出一种基于消除孤立点合理选择训练样本的物流预测(IFCM-RBFNN)。首先采用密度方法识别和剔除原始物流需求数据中的孤立点,消除孤立点对聚类结果的不利影响;然后采用模糊均值聚类(FCM)算法对物流需求数据进行聚类,选择最优训练样本集;最后采用RBF神经网络建立物流需求预测模型,并采用仿真实验对其性能进行测试。仿真结果表明,相对于对比模型,IFCM-RBFNN提高了物流需求的预测精度,预测结果更加可靠。In this paper, in order to improve the accuracy of the forecasting of logistics demand, we proposed the forecasting method based on IFCM-RBFNN, then introduced the working mechanism of the method and at the end, through a simulationcompared it with other logistics demand forecasting methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249