检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨锦锋[1] 于秋滨[2] 关毅[1] 蒋志鹏[1]
机构地区:[1]哈尔滨工业大学语言技术中心网络智能研究室,哈尔滨150001 [2]哈尔滨医科大学附属第二医院病案室,哈尔滨150086
出 处:《自动化学报》2014年第8期1537-1562,共26页Acta Automatica Sinica
基 金:国家自然科学基金(60975077)资助~~
摘 要:电子病历(Electronic medical records,EMR)产生于临床治疗过程,其中命名实体和实体关系反映了患者健康状况,包含了大量与患者健康状况密切相关的医疗知识,因而对它们的识别和抽取是信息抽取研究在医疗领域的重要扩展.本文首先讨论了电子病历文本的语言特点和结构特点,然后在梳理了命名实体识别和实体关系抽取研究一般思路的基础上,分析了电子病历命名实体识别、实体修饰识别和实体关系抽取研究的具体任务和对应任务的主要研究方法.本文还介绍了相关的共享评测任务和标注语料库以及医疗领域几个重要的词典和知识库等资源.最后对这一研究领域仍需解决的问题和未来的发展方向作了展望.Electronic medical records (EMRs) are generated in the process of clinical treatments. Named entities and entity relations in EMRs reflect patients0 health conditions and represent patients0 personalized medical knowledge. Conse-quently, named entity recognition and entity relation extraction on EMR are important expansion of information extraction in the medical domain. In this paper, the language characteristic and structure features of EMR narratives are firstly discussed, and then general methods for named entity recognition and relation extraction are sketched out. Furthermore, this paper introduces and analyzes the tasks and corresponding methods for named entity recognition, entity assertion recognition and relation extraction of EMR in detail. Related shared evaluation tasks and annotated corpora as well as several important dictionaries and knowledge bases are also introduced. Finally, problems to be handled and future research directions are proposed.
关 键 词:电子病历 命名实体识别 实体关系抽取 共享评测任务
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222