检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学精密光机电一体化技术教育部重点实验室,北京100191
出 处:《红外与激光工程》2014年第8期2765-2771,共7页Infrared and Laser Engineering
基 金:国家自然科学基金(61340054);国家重大科学仪器设备开发专项基金(2012YQ140032)
摘 要:大气中微小颗粒(如雾、霾等)的散射作用会使户外场景拍摄的图像发生退化,造成图像质量下降。图像去雾可以提升图像对比度,增加场景能见度,校正颜色失真,改善视觉效果。但是图像去雾经常会出现明显的噪声放大现象,尤其是无穷远处的天空区域最为严重。针对这一问题,提出了一种去雾过程中的噪声抑制方法。以传输率图像为指导,采用滤波半径变化的双边滤波对雾天图像进行模糊。再计算新的传输率图像,代入雾天成像模型,得到去噪后复原图像。结合噪声评价方法,实验结果验证了该方法的噪声抑制效果。The scattering of particles (e.g. haze particles and fog droplets) in the atmosphere degrades images of outdoor scenes and further harms image quality. Image dehazing can significantly gain contrast, increase scene visibility, correct color shift introduced by the airlight and improve visual effect. Nonetheless, image dehazing is prone to noise amplification. Noise of the dehazed image is obvious in regions with low transmission, especially for distant sky region. A noise inhibition method during image dehazing was proposed to solve this problem. The hazy image was smoothed by the bilateral filter with varying radius which was adapted to the transmission map. The new transmission map was calculated again corresponding to the smoothed hazy image, and then used to estimate the denoised recovery image. Combining the noise estimation method for single color image, experimental results demonstrate our method's performance with noise inhibition.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222