基于径向基神经网络的铁路客货运量预测研究  被引量:20

Railway passenger and freight prediction based on RBF neural network theory

在线阅读下载全文

作  者:吴华稳[1] 甄津 王宇 王富章[1] 

机构地区:[1]中国铁道科学研究院电子计算技术研究所,北京100081 [2]铁道部信息技术中心,北京100844 [3]中国铁路总公司计划统计部,北京100844

出  处:《铁道科学与工程学报》2014年第4期109-114,共6页Journal of Railway Science and Engineering

基  金:铁道部科技研究计划资助项目(2007X008-G;2008X015-H)

摘  要:根据径向基神经网络具有分析非线性动态系统的混沌特性的特点,对铁路客货运发送量相关时间序列进行分析和研究,在Takens相空间重构的基础上,利用互信息方法求嵌入时延、伪邻域方法求嵌入维数;应用G-P方法和最大Lyapunov指数方法对铁路客货运量时间序列进行混沌识别;根据RBF神经网络的学习算法和辨识原理,对铁路客货运量预测流程进行分析。应用径向基神经网络对铁路客货运量自1999-01-01-2012-08-27共4 988 d的发送量为基础进行径向基神经网络预测;并对预测误差进行检验及对预测结果进行分析。研究结果表明:基于径向基神经网络预测值能很好地与实际值相吻合,因而在铁路客货运量相关时间序列中预测有广泛的实用价值。Based on characteristic of RBF neural network theory to analyze the chaos of nonlinear dynamic systems,railway passenger and freight volume time series were analyzed. Specifically,on the basis of Takens phase space reconstruction,firstly mutual information method was used to calculate embedded time-delay and false neighbor method was utilized to calculate embedded dimension. Then G-P method and maximal Lyapunov index method were adopted to identify the chaos of railway passenger and freight volume time series. The next step,the prediction course of railway passenger and freight volume was analyzed using the learning algorithm and the identification principle. Finally RBF neural network theory was used to conduct prediction on railway passenger and freight volume from January 1st 1999 to August 27 th 2012 with a total of 4988 days. Thereinto the prediction error was examined and the prediction result was analyzed. The result shows that the predicted data using RBF neural network theory is in accordance with the real data. Therefore RBF neural network theory has extensive and practical value in railway passenger and freight volume time series prediction.

关 键 词:铁路运输 RBF神经网络 相空间重构 客货运量混沌时间序列 混沌预测 

分 类 号:O175.13[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象