检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《仪器仪表学报》2014年第8期1914-1920,共7页Chinese Journal of Scientific Instrument
摘 要:针对微量药品动态称重系统中电阻应变式称重传感器的输出电压与药品单元质量之间的非线性关系问题,提出了基于BP神经网络的非线性补偿方案。基于L-M算法建立了BP神经网络模型,实现了电阻应变式称重传感器的输入与输出非线性补偿校正,并与bfgs拟牛顿算法、Scaled共轭梯度算法所建立的BP神经网络模型对比,重点比较了模型预测输出、误差性能分析、回归分析。仿真实验结果表明:基于L-M算法建立的BP神经网络模型,在收敛速度、误差性能方面具有更高效的表现,有利于微量药品动态称重系统中称重传感器的非线性特性的有效校正。Aiming at the nonlinear characteristic between the weighing sensor output and the weight of capsule unit in micro scale capsule dynamic weighing system,a nonlinearity compensation scheme based on BP neural network is proposed.A BP neural network model is established based on Levenberg-Marquardt algorithm.The model implements the nonlinearity compensation between the output voltage of weighing sensor and the input of capsule unit weight.The proposed method was compared with bfgs quasi-Newton algorithm and scaled conjugation gradient algorithm,and the model performances of forecasting output,error performance analysis and regression analysis were compared.Simulation results show that the BP neural network model based on Levenberg-Marquardt algorithm has high performance in terms of convergence rate and error performance.The model is more suitable for the nonlinearity compensation in micro scale capsule dy-namic weighing system.
关 键 词:微量 药品称重 动态 BP神经网络 LEVENBERG-MARQUARDT算法 拟牛顿算法 Scaled共轭梯度算法 误差性能分析
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.42.179