检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武警工程大学装备工程学院,陕西西安710086
出 处:《实验室研究与探索》2014年第6期60-64,共5页Research and Exploration In Laboratory
摘 要:为了更好地预测Mg/PTFE贫氧推进剂配方与其性能之间的关系,分别采用支持向量机(SVM)和BP神经网络对Mg/PTFE贫氧推进剂的燃烧热、燃烧温度和燃速进行了预测,并将各自的预测结果与测试结果进行了比较验证。结果表明,SVM能够较好地对Mg/PTFE贫氧推进剂的性能进行预测,其预测的最大相对误差(4.2%,9.8%,10.0%)都比BP神经网络预测的相对误差(13.0%,25.9%,41.8%)小,精度较高,为Mg/PTFE贫氧推进剂的性能预测提供了一种新方法。According to the complicated relationship among the formulation design for Mg/PTFE fuel rich propellant and its combustion heat, combustion temperature and combustion rate, the support vector machine (SVM) and BP neural network in the use of performance prediction of Mg / PTFE fuel rich propellant were introduced. The results were verified by experiments at last. The results showed that the prediction maximum relative errors (4. 2% , 9. 8% , 10.0% ) of SVM were smaller than BP neural network ( 13.0% , 25.9% , 41.8% ) , and the SVM was capable of making accurate predictions of performance of the Mg/PTFE fuel rich propellant.
分 类 号:TJ530[兵器科学与技术—军事化学与烟火技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.68