检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连海洋大学应用技术学院,辽宁大连116300 [2]沈阳师范大学数学与系统科学学院,沈阳110034
出 处:《沈阳师范大学学报(自然科学版)》2014年第3期384-387,共4页Journal of Shenyang Normal University:Natural Science Edition
基 金:辽宁省教育厅高等学校科学研究项目(20060842);辽宁省高等教育改革研究项目(辽教发[2009]141号)
摘 要:从杨辉四阶幻方入手,介绍了两种四阶幻方的构造方法,分别是通过对幻方进行元素互换的杨辉构造法和用元素构造矩阵的矩阵构造法。运用线性代数的方法探求四阶幻方的解,建立了四阶幻方的约束方程组,并通过初等变换得到了约束方程组等价的约束条件,利用这些约束条件并结合四阶幻方的性质得到了关于四阶幻方的等价关系。通过这种等价关系,对四阶幻方进行"行变换"与"列变换"举出了由已知幻方生成基本幻方和怎样构造四阶幻方的例子。阐述了幻方同构的概念和幻方总数与基本解的个数,并且指出对于一个已知幻方,共存在8个与其同构的幻方,其中包括已知幻方。The paper begins to the Yang Hui fourth-order magic square and introduces two methods of constructing magic square of fourth-order,they are the Yang Hui method though exchanging the elements of magic and the constructing matrix with elements.By using the method of linear algebra to explore the solution of fourth-order magic squares and establishing a constraint equations of fourth-order magic square to obtain the equivalent constraints of equations though elementary transformation.The paper obtains the equivalence relation of four order by using these constraints and the properties of magic squares.Though the above equivalence relation,we made the forth-order magic squares to"line transformation"and"row transformation"and cited the examples to illustrate that how to use the known to get the basic magic square.Finally,the paper described the isomorphic concept of magic square and demonstrated the number of basic solution.As to a known magic square,the paper points that there are eight isomorphic magic squares which including the known magic square.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15