检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《西安电子科技大学学报(社会科学版)》2014年第4期56-64,共9页Journal of Xidian University:Social Science Edition
基 金:西南民族大学中央高校资助项目(2014SZYTD01);研究生创新科研项目重点项目"结构突变下金融市场间的信息溢出效应分析"(CX2014SZ35)阶段性成果
摘 要:考察波动的结构突变性对模型估计和预测能力的影响,并通过SPA检验评估几种GARCH模型的预测能力优劣。研究发现,我国股市收益率的波动在样本期内发生了4次结构突变,波动存在着伪持续现象,且这种突变影响了模型的预测能力;SPA检验表明,短期预测上,经结构突变修正的GARCH模型具有较高的预测能力,验证了结构突变对波动预测的重要性;长期预测上,基于滚动时间窗口下的GARCH模型具有较好的预测能力,通过调整时间窗口的方法来消除结构突变的影响有助于提升模型预测能力。The author takes account into the influence of the structural breaks into the GARCH model and the forecasting of the volatility, uses the SPA test to evaluate the ability of prediction of several GARCH models. The research shows the evidence of structural breaks in the unconditional variance of the stock returns series over the period and the high levels of persistence in the parameter estimates of the GARCH(1,1) model across the sub-samples. The impact of structural breaks on the accuracy of volatility forecasts has largely been ignored in previous research. The SPA test shows that, in the short-run volatility forecasting, the GARCH model with structural breaks performs best, whereas the GARCH model with rolling windows performs well in the long term prediction. By adjusting the estimation window, it can eliminate the influence of structural breaks and help improve prediction ability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.202