检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国人民解放军陆军军官学院,合肥230031
出 处:《计算机研究与发展》2014年第9期1901-1910,共10页Journal of Computer Research and Development
基 金:国家自然科学基金项目(61273296;60975040);安徽省自然科学基金项目(1308085QF121)
摘 要:随机梯度下降(stochastic gradient descent,SGD)是一种求解大规模优化问题的简单高效方法,近期的研究表明,在求解强凸优化问题时其收敛速率可通过α-suffix平均技巧得到有效的提升.但SGD属于黑箱方法,难以得到正则化优化问题所期望的实际结构效果.另一方面,COMID(composite objective mirror descent)是一种能保证L1正则化结构的稀疏随机算法,但对于强凸优化问题其收敛速率仅为O(logT?T).主要考虑"L1+Hinge"优化问题,首先引入L2强凸项将其转化为强凸优化问题,进而将COMID算法和α-suffix平均技巧结合得到L1MD-α算法.证明了L1MD-α具有O(1?T)的收敛速率,并且获得了比COMID更好的稀疏性.大规模数据库上的实验验证了理论分析的正确性和所提算法的有效性.Stochastic gradient descent(SGD)is a simple but efficient method for large-scale optimization problems.Recent researches have shown that its convergence rate can be effectively improved by using the so-calledα-suffix averaging technique in solving the strongly convex problems.However,SGD is purely a black-box method,so it is difficult to obtain the expected effect on the learning structure while solving the regularized optimization problems.On the other hand,composite objective mirror descent(COMID)in the stochastic setting is a scalable algorithm which can effectively keep the sparsity imposed by L1regularization;But it can only obtain an O(logT?T)convergence rate for the strongly convex optimization problems.In this paper,we focus on the generally convex optimization problem in the form of"L1+ Hinge".To make full use of theα-suffix averaging technique,we first change it into a strongly convex optimization problem by adding an L2 strongly convex term.Then,we present an L1MD-αalgorithm which combines the COMID algorithm and theα-suffix averaging technique.We prove that the L1MD-αalgorithm can achieve an O(1/T)convergence rate.As a result,our L1MD-αalgorithm not only obtains faster convergence rate but also better sparsity than COMID.Through extensive experiments on some typical large-scale datasets we finally verify the correctness of the theoretical analysis and effectiveness of the proposed algorithm.
关 键 词:机器学习 随机优化 稀疏性 L1正则化 COMID
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222