检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]扬州大学建筑工程与科学学院,江苏扬州225127 [2]中船第九设计研究院工程有限公司,上海200063
出 处:《华东交通大学学报》2014年第3期80-87,共8页Journal of East China Jiaotong University
摘 要:基于高阶剪切变形理论,采用微分求积法(DQM)研究了功能梯度材料Levinson梁的静态弯曲解,并与Timoshenko梁的弯曲解进行了比较。考虑功能梯度梁的材料性质沿厚度方向按照幂函数连续变化,建立了梁的无量纲控制方程,给出了均布载荷作用下,长细比为10时,相同尺寸的梁在3种常见的边界条件下功能梯度Levinson梁的无量纲挠度随梯度指数p的变化规律以及不同边界条件下功能梯度材料Levinson梁的无量纲挠度随长细比的变化规律。Based on the higher-order shear deformation theory, this paper gets static bending solutions of FGM Levinson beams by differential quadrature method and then compares those with the Timoshenko beams bending so-lutions. The non-dimensional governing equations of FGM beams are derived by considering the material properties which vary continuously in the thickness direction based on power law exponent, and the non-dimensional deflection of three common boundary conditions are derived by considering the material properties varying with the power law exponent in the thickness direction while the slenderness ratio is ten. The non-dimensional deflections of FGM Levinson beams for the different boundary conditions are also illustrated at varied slenderness ratio.
关 键 词:功能梯度材料 Levinson梁 TIMOSHENKO梁 弯曲解 微分求积法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.124